Search results

Search for "sodium iodide" in Full Text gives 41 result(s) in Beilstein Journal of Organic Chemistry.

Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters

  • Carlos R. Azpilcueta-Nicolas and
  • Jean-Philip Lumb

Beilstein J. Org. Chem. 2024, 20, 346–378, doi:10.3762/bjoc.20.35

Graphical Abstract
  • , Shang and Fu initially demonstrated this approach by utilizing catalytic amounts of triphenylphosphine (PPh3) and sodium iodide (NaI) [67]. Upon formation of EDA complex 80, radical addition to silyl enol ether 81 was promoted under blue light irradiation, affording acetophenone product 82 (Scheme 16A
PDF
Album
Perspective
Published 21 Feb 2024

Recent advancements in iodide/phosphine-mediated photoredox radical reactions

  • Tinglan Liu,
  • Yu Zhou,
  • Junhong Tang and
  • Chengming Wang

Beilstein J. Org. Chem. 2023, 19, 1785–1803, doi:10.3762/bjoc.19.131

Graphical Abstract
  • the photoredox cross-coupling reactions discussed above. A recent elegant study conducted by Chen and colleagues introduced a straightforward method that directly employed sodium iodide for photoinduced deaminative alkenylation processes [11]. This method enabled the synthesis of β,γ-unsaturated
  • and colleagues introduced an interesting metal- and oxidant-free photocatalytic C–H alkylation method for coumarins 18 [17]. The method utilized triphenylphosphine and sodium iodide, along with readily available alkyl N-hydroxyphthalimide esters (NHPIs) 3 as the alkylation reagents (Scheme 10
PDF
Album
Review
Published 22 Nov 2023

Synthesis of ether lipids: natural compounds and analogues

  • Marco Antônio G. B. Gomes,
  • Alicia Bauduin,
  • Chloé Le Roux,
  • Romain Fouinneteau,
  • Wilfried Berthe,
  • Mathieu Berchel,
  • Hélène Couthon and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2023, 19, 1299–1369, doi:10.3762/bjoc.19.96

Graphical Abstract
PDF
Album
Review
Published 08 Sep 2023

NaI/PPh3-catalyzed visible-light-mediated decarboxylative radical cascade cyclization of N-arylacrylamides for the efficient synthesis of quaternary oxindoles

  • Dan Liu,
  • Yue Zhao and
  • Frederic W. Patureau

Beilstein J. Org. Chem. 2023, 19, 57–65, doi:10.3762/bjoc.19.5

Graphical Abstract
  • ethers and N-heteroarenes by using a novel catalytic system based on sodium iodide (NaI) and triphenylphosphine (PPh3), suggested to function as an electron donor–acceptor (EDA) complex [55][56][57][58][59][60]. Compared to previously reported radical reactions, this novel catalytic system has the key
  • run in a similar fashion to related well-documented previous reports [54][68][69][70][71][72][73][74][75][76][77], through a light-induced, phosphine-assisted, intermolecular electron transfer from sodium iodide to the redox-active ester. Conclusion In summary, we developed an effective photocatalytic
PDF
Album
Supp Info
Letter
Published 16 Jan 2023

Synthesis of α-(perfluoroalkylsulfonyl)propiophenones: a new set of reagents for the light-mediated perfluoroalkylation of aromatics

  • Durbis J. Castillo-Pazos,
  • Juan D. Lasso and
  • Chao-Jun Li

Beilstein J. Org. Chem. 2022, 18, 788–795, doi:10.3762/bjoc.18.79

Graphical Abstract
  • secondary carbon atom at 40 °C (Scheme 2). Furthermore, increasing the temperature to 70 °C was not found to generate the product and instead resulted in slight decomposition of the starting materials. Attempting to trap the sulfinate nucleophiles with primary benzyl bromide (4) with catalytic sodium iodide
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2022

Ready access to 7,8-dihydroindolo[2,3-d][1]benzazepine-6(5H)-one scaffold and analogues via early-stage Fischer ring-closure reaction

  • Irina Kuznetcova,
  • Felix Bacher,
  • Daniel Vegh,
  • Hsiang-Yu Chuang and
  • Vladimir B. Arion

Beilstein J. Org. Chem. 2022, 18, 143–151, doi:10.3762/bjoc.18.15

Graphical Abstract
  • derivative 7 was generated in 79% yield by treatment of amine 6 with chloroacetyl chloride. Next, the aminoacetyl group in 7 was benzyl-protected to give 8 in 88% yield. Halogen exchange reaction using excess sodium iodide in acetone gave the desired iodo-alkyl derivative 9 in 79% yield. Lastly, our attempt
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2022

The preparation and properties of 1,1-difluorocyclopropane derivatives

  • Kymbat S. Adekenova,
  • Peter B. Wyatt and
  • Sergazy M. Adekenov

Beilstein J. Org. Chem. 2021, 17, 245–272, doi:10.3762/bjoc.17.25

Graphical Abstract
  • Difluorocarbene methods with organometallic sources Decomposition of phenyl(trifluoromethyl)mercury in the presence of sodium iodide: The preparation of difluorocyclopropanes using phenyl(trifluoromethyl)mercury (PhHgCF3, 45, Seyferth's reagent) as a source of difluorocarbene, results in good yields of the
  • drawback because organomercury compounds are extremely toxic and environmentally persistent. Decomposition of trimethyl(trifluoromethyl)tin in the presence of sodium iodide: It is also possible to prepare difluorocyclopropanes from olefins and trifluoromethyl derivatives of tin such as trimethyl
PDF
Album
Review
Published 26 Jan 2021

Regioselective synthesis of heterocyclic N-sulfonyl amidines from heteroaromatic thioamides and sulfonyl azides

  • Vladimir Ilkin,
  • Vera Berseneva,
  • Tetyana Beryozkina,
  • Tatiana Glukhareva,
  • Lidia Dianova,
  • Wim Dehaen,
  • Eugenia Seliverstova and
  • Vasiliy Bakulev

Beilstein J. Org. Chem. 2020, 16, 2937–2947, doi:10.3762/bjoc.16.243

Graphical Abstract
  • Beckmann reaction of oximes with p-toluenesulfonyl azide [34], the sulfonyl ynamide rearrangement by treatment with amines [35], the sodium iodide catalyzed reaction of sulfonamide with formamide [36], and the condensation of sulfonamide derivatives with DMF–DMA [37]. A few representatives of N-sulfonyl
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2020

Synthesis of organic liquid crystals containing selectively fluorinated cyclopropanes

  • Zeguo Fang,
  • Nawaf Al-Maharik,
  • Peer Kirsch,
  • Matthias Bremer,
  • Alexandra M. Z. Slawin and
  • David O’Hagan

Beilstein J. Org. Chem. 2020, 16, 674–680, doi:10.3762/bjoc.16.65

Graphical Abstract
  • illustrated in Scheme 1. Difluorocyclopropane 8 can be directly prepared through a [2 + 1] carbene cycloaddition reaction. Thus, treatment of 12 with trimethyl(trifluoromethyl)silane (TMSCF3) and sodium iodide under refluxing conditions [13][14] gave the corresponding product 8 in one step and a 55% yield
PDF
Album
Supp Info
Full Research Paper
Published 14 Apr 2020

Visible-light-induced addition of carboxymethanide to styrene from monochloroacetic acid

  • Kaj M. van Vliet,
  • Nicole S. van Leeuwen,
  • Albert M. Brouwer and
  • Bas de Bruin

Beilstein J. Org. Chem. 2020, 16, 398–408, doi:10.3762/bjoc.16.38

Graphical Abstract
  • significant increase of the reaction yield either. In addition, sodium iodide and tetrabutylammonium iodide were tested in an attempt to form an iodo intermediate which was expected to cyclize more easily to the lactone [44]. However, the lack of solubility of these reagents in benzene likely hampered
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2020

Synthesis of C-glycosyl phosphonate derivatives of 4-amino-4-deoxy-α-ʟ-arabinose

  • Lukáš Kerner and
  • Paul Kosma

Beilstein J. Org. Chem. 2020, 16, 9–14, doi:10.3762/bjoc.16.2

Graphical Abstract
  • -configuration of the hexenitol unit was derived from the 3JC,P coupling constant (14.1 Hz), which was in good agreement with reported data [22][28]. Next, selective O-demethylation of the phosphonate diester was elaborated. Using sodium iodide in acetone afforded the mono-O-demethylated derivative 9 in 98
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2020

An improved synthesis of adefovir and related analogues

  • David J. Jones,
  • Eileen M. O’Leary and
  • Timothy P. O’Sullivan

Beilstein J. Org. Chem. 2019, 15, 801–810, doi:10.3762/bjoc.15.77

Graphical Abstract
  • Finkelstein reaction afforded iodide 14. During the optimisation of this transformation, we observed that 2.0 equivalents of sodium iodide were required in order to achieve complete consumption of 19. Iodide 14 was stored under a nitrogen atmosphere over copper wire in an amber container and found to be
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2019

First synthesis of cryptands with sucrose scaffold

  • Patrycja Sokołowska,
  • Michał Kowalski and
  • Sławomir Jarosz

Beilstein J. Org. Chem. 2019, 15, 210–217, doi:10.3762/bjoc.15.20

Graphical Abstract
  • , 67.94; H, 6.85; Cl, 6.43. 1’,2,3,3’,4,4’-Hexa-O-benzyl-6,6’-bis[2-(2-iodoethoxy)ethyl]sucrose (10): A solution of the above bis-chloro derivative 9 (813 mg, 0.74 mmol) in dry acetone (16 mL) containing dry sodium iodide (444.7 mg, 2.97 mmol) was stirred and boiled under reflux for 24 h. After cooling to
  • bis-chloro derivative 21 (235 mg, 0.21 mmol) and dry NaI (569.9 mg, 3.80 mmol) in dry acetone (7 mL) was stirred and boiled under reflux. After 24 h another portion of sodium iodide (190 mg, 1.27 mmol) was added and stirring under reflux was continued for 24 hours. After cooling, the precipitate was
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2019

6’-Fluoro[4.3.0]bicyclo nucleic acid: synthesis, biophysical properties and molecular dynamics simulations

  • Sibylle Frei,
  • Andrei Istrate and
  • Christian J. Leumann

Beilstein J. Org. Chem. 2018, 14, 3088–3097, doi:10.3762/bjoc.14.288

Graphical Abstract
  • improving the already existing protocol [50]. The sugars 2α/β were then individually treated with the Ruppert–Prakash reagent (TMSCF3) as difluorocarbene precursor and sodium iodide as initiator [52], furnishing the exo-tricyclic sugars 3α/β as major isomers. The closer evaluation of this reaction revealed
PDF
Album
Supp Info
Full Research Paper
Published 20 Dec 2018

One hundred years of benzotropone chemistry

  • Arif Dastan,
  • Haydar Kilic and
  • Nurullah Saracoglu

Beilstein J. Org. Chem. 2018, 14, 1120–1180, doi:10.3762/bjoc.14.98

Graphical Abstract
PDF
Album
Review
Published 23 May 2018

CF3SO2X (X = Na, Cl) as reagents for trifluoromethylation, trifluoromethylsulfenyl-, -sulfinyl- and -sulfonylation and chlorination. Part 2: Use of CF3SO2Cl

  • Hélène Chachignon,
  • Hélène Guyon and
  • Dominique Cahard

Beilstein J. Org. Chem. 2017, 13, 2800–2818, doi:10.3762/bjoc.13.273

Graphical Abstract
  • triphenylphosphine in acetonitrile at 60 °C [44]. The addition of catalytic amounts of sodium iodide, while not being essential for the production of the trifluoromethylsulfenylated substrates, permitted to slightly increase the yields (Scheme 35). For that matter, excellent yields were achieved indifferently of the
PDF
Album
Full Research Paper
Published 19 Dec 2017

Vinylphosphonium and 2-aminovinylphosphonium salts – preparation and applications in organic synthesis

  • Anna Kuźnik,
  • Roman Mazurkiewicz and
  • Beata Fryczkowska

Beilstein J. Org. Chem. 2017, 13, 2710–2738, doi:10.3762/bjoc.13.269

Graphical Abstract
  • rearrangement of the primary O-imidoylation reaction product 21 (Scheme 15). The second method (procedure B) is based on the reaction of ylides with imidoyl iodides that are synthesized in situ from the corresponding imidoyl chlorides via the exchange of chlorine for iodine in the presence of sodium iodide
PDF
Album
Review
Published 15 Dec 2017

Synthesis of ergostane-type brassinosteroids with modifications in ring A

  • Vladimir N. Zhabinskii,
  • Darya A. Osiyuk,
  • Yuri V. Ermolovich,
  • Natalia M. Chaschina,
  • Tatsiana S. Dalidovich,
  • Miroslav Strnad and
  • Vladimir A. Khripach

Beilstein J. Org. Chem. 2017, 13, 2326–2331, doi:10.3762/bjoc.13.229

Graphical Abstract
  • mesylation of diol 18 produced dimesylate 19, which was treated with zinc dust and sodium iodide in refluxing DMF (Tipson–Cohen reaction [16]) to give, after deacetylation, B-lactone olefin 21 in 96% yield. 2α,3α- and 2β,3β-epoxides of type 4 and 5 Olefins of type 3 are evident intermediates for the
PDF
Album
Supp Info
Full Research Paper
Published 02 Nov 2017

Phosphonic acid: preparation and applications

  • Charlotte M. Sevrain,
  • Mathieu Berchel,
  • Hélène Couthon and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2017, 13, 2186–2213, doi:10.3762/bjoc.13.219

Graphical Abstract
  • work of Pohjala et al. [162] (Figure 15B) The authors showed that the diphosphonate 40 featuring both phenyl and alkyl substituents treated with chlorotrimethylsilane and sodium iodide in CH3CN yielded, after methanolysis and treatment with NaOH, compound 41 resulting from the hydrolysis of the diethyl
PDF
Album
Review
Published 20 Oct 2017

Transition-metal-catalyzed synthesis of phenols and aryl thiols

  • Yajun Liu,
  • Shasha Liu and
  • Yan Xiao

Beilstein J. Org. Chem. 2017, 13, 589–611, doi:10.3762/bjoc.13.58

Graphical Abstract
  • -withdrawing groups in moderate to excellent yields (Scheme 7). A broad scope of functional groups was tolerated. They also showed that electron-rich aryl bromides were also converted to phenols via a two-step procedure by addition of sodium iodide. A mechanistic study in the group of Jutand revealed the
PDF
Album
Review
Published 23 Mar 2017

New syntheses of (±)-tashiromine and (±)-epitashiromine via enaminone intermediates

  • Darren L. Riley,
  • Joseph P. Michael and
  • Charles B. de Koning

Beilstein J. Org. Chem. 2016, 12, 2609–2613, doi:10.3762/bjoc.12.256

Graphical Abstract
  • attempt to circumvent the issues associated with the purification of the cyclic enamines, we investigated the conversion of alcohols 8c and 8d into the corresponding tosylates followed by treatment with sodium iodide as an alternative for the cyclisation step. The tosylations afforded 10c and 10d in 19
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2016

A direct method for the N-tetraalkylation of azamacrocycles

  • Andrew J. Counsell,
  • Angus T. Jones,
  • Matthew H. Todd and
  • Peter J. Rutledge

Beilstein J. Org. Chem. 2016, 12, 2457–2461, doi:10.3762/bjoc.12.239

Graphical Abstract
  • high levels of over-alkylation to quaternary amine salts observed. Using exactly four equivalents of the electrophile increased the yield to 30%, while adopting a modified Finkelstein procedure by adding catalytic sodium iodide gave a modest further increase in yield, to 39%. Adapting the Tsukube
PDF
Album
Supp Info
Letter
Published 18 Nov 2016

Efficient mechanochemical synthesis of regioselective persubstituted cyclodextrins

  • Laszlo Jicsinszky,
  • Marina Caporaso,
  • Katia Martina,
  • Emanuela Calcio Gaudino and
  • Giancarlo Cravotto

Beilstein J. Org. Chem. 2016, 12, 2364–2371, doi:10.3762/bjoc.12.230

Graphical Abstract
  • not proceed at all or only partial substitution was achieved at low NaN3/halogen ratios, while only an increased NaN3 ratio afforded the complete substitution of the CH2–I groups, possibly because of the steric hindrance of the bulky sodium iodide. Iodine and metal iodides are preferred salts in
PDF
Album
Supp Info
Full Research Paper
Published 10 Nov 2016

Enduracididine, a rare amino acid component of peptide antibiotics: Natural products and synthesis

  • Darcy J. Atkinson,
  • Briar J. Naysmith,
  • Daniel P. Furkert and
  • Margaret A. Brimble

Beilstein J. Org. Chem. 2016, 12, 2325–2342, doi:10.3762/bjoc.12.226

Graphical Abstract
  • addition of sodium iodide to afford the desired cyclic sulfonamide 54. For the synthesis of (±)-enduracididine (1) and (±)-allo-enduracididine (3), protected (±)-allylglycine 55 was treated with BocNHS(O)2NH2, MgO, Rh2(esp)2 and PhI(OAc)2 in isopropyl acetate followed by sodium iodide to afford cyclic
PDF
Album
Review
Published 07 Nov 2016

Selective bromochlorination of a homoallylic alcohol for the total synthesis of (−)-anverene

  • Frederick J. Seidl and
  • Noah Z. Burns

Beilstein J. Org. Chem. 2016, 12, 1361–1365, doi:10.3762/bjoc.12.129

Graphical Abstract
  • chemoselectively decomposed, via a reductive de-dihalogenation pathway to the corresponding olefin, by heating the crude material to reflux in acetone with sodium iodide. Total synthesis of anverene With scalable access to 6, a total synthesis of (−)-anverene (1) was explored (Scheme 2). Homoprenol (5) was
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2016
Other Beilstein-Institut Open Science Activities